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ABSTRACT

A new and unified approach to test equating is described that is based on

log-linear models for smoothing score distributions and on the kernel method of

non-parametric density estimation. The new method contains both linear and

standard equipercentile methods as special cases and can handle several impor-

tant equating data collection design!;. An example is used to illustrate the new

method for the random groups and external anchor-test designs.
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1. INTRODUCTION

This paper introduces a new and unified approach to test equating based on

a flexible family of equating functions that contains both the linear and the

equipercentile equating functions as special cases. The new method grows out of

the perspective on observed-sccre test equating described in Braun and Holland

(1982). We call the new approach the "kernel method of equating tests" because

of its close connection to the well-studied methods of non-parametric density

estimation using a gaussian kernel, Tapia and Thompson (19V-'). The kernel

method may be viewed as generalizing certain features of the equipercentile

method described by Angoff (1984). Because of this we first review the equiper-

centile method from our perspective; this also allows us to introduce our nota-

tional scheme.

Review of equipercentile equating

Suppose we have two tests, denoted by X and Y, and let the possible raw-

score values fcr X and Y be denoted by xl,...,xj and yi,...,yK, respectively.

In this notation, J and K are the number of possible raw-score values and not

the number of test items on X and Y. In the applications that concern us,

xl,...,xj will denote consecutive integers; similarly for yl,...,yk. If, for

example, X is a number-right scored test, then xl = 0, x2 = 1,... and xj the

number of items in test X. Alternatively, for a rounded formula-scored X, xl is

negative but xj still denotes the number of items in X.

As Braun and Holland (1982) emphasize, observed-score test equating always

takes place on a specific population of examinees. We suppose that this popula-

tion is fixed and let rj and sk denote the score probabilities for this popula-

tion, i.e.,

BEST COPY AVAILABLE
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rj = ProbIX = xjl , sk = ProbtY = ykl . (1)

In (1), we abuse notation slightly and let X denote both a test and the score

of a randomly elected examinee on this test. (Similarly for Y). The score

probabilities, trj1 and tskl, are population parameters and depend on the

underlying population of examinees. They must be estimated from the data

collected in the equating experiment. We defer a serious discussion of how they

might be estimated to section 3 and merely suppose that estimates, [rj] and

(A ,

tskl, are available.

Associated with the score probabilities are the cumulative distribution

functions (cdfs) of the test scores for X and Y that are defined by

and

F(x) = Prob(X x) = E rj , (2)

xj x

G(y) = Prob(Y y) = sk .

Yk Y

(3)

In (2), x denotes any real number and the summation is over all j for which xj

does not exeed x. In (3), y denotes any real number and the sum is over all k

for which yk does not exceed y. The cdfs, F and G, defined in (2) and (3) are

step functions with jumps at the possible values for X and Y, respectively.

If F and G were continuous cdfs (as is, for example, the cdf for the nor-

mal distribution) then the equipercentile equating function for equating X to Y

would have the form

ey(x) = G-I(F(x))

and for equating Y to X it would have the form

ex(y) = F-I(G(y))

(4)

(5)
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where F-1 and G-I denote the inverse functions of : and G defined by

x = F(p) if and only if p = F(x)
and

y - G(p) if and only if p = G(y).

See Braun and Holland (1982) for more discussions of this description of

equipercentile equating.

If F and G were continuous, the function ey(x) and ex(y) defined in (4) and

(5) would exactly match the distribution of e(Y) to that of X and the distribu-

tion of ey(X) to that of Y. However, in practice F and G are discrete so that,

strif-tly speaking, F-1 and G-1 do not exist and hence ey and ex cannot be

defined as in (4) and (5). This fact is usually glossed over in discussions of

equipercentile equating (e.g. Angoff, 1984; Lord, 1950). Instead, F and G are

approximated by linear interpolation to obtain percentile ranks. It is instruc-

tive to see exactly how this linear interpolation is derived mathematically, and

we now do this.

The percentile rank of a score xk is defined as the proportion of examinees

in the population scoring below xk plus one-half of the proportion scoring

exactly xk (Angoff, 1984). How can such a definition be justified? Here is on-

approach to justifying it.

Supoose U is a random variable with a uniform distribution on and

suppose that U is independent of the discrete random variable X where

rj = Probk = xj], j = 1,...,J.

The cdf f U is Oven by

ProbtU =

if u V2,

0 if u 5_ -

u + 1/2 if ½ < u < ½ .

(6)



Now consider a new random variable X* defined by

(7)

4

The new variable X* has a continuous distribution that is spread over the inter-

val xi - 'A to xj + . The cdf of X* is found as follows.

F*(x) = Probk* 5 xl = ProblX + U 5 xl

ProbtX +U<xIX= xj]Probk = xj1 = 2 ProbN 5x- x- I X x r-j

= Prob1U x - xj) rj .

But from (6) it follows that

Prob{U x Xjl =

and hence we have

1 if x > x- + ,

if x < x. -
J "

x-x.+JAif.-1A < x < x . + ,

xJ
_

(8)

rj + (x x. + 1, for xi - x x: + (9)

xJ . <

where the summation in (9) is over all j for which xj does not exceed x -

Now evaluate F*(x) at xi and we have

F*(xi) E rj + ½ ri (10)

x- < xi

which is the probability of scoring below xi plus one half the probability of

scoring exactly xi and this is the definition of percentile ranks given above.

This shows that the percentile rank of xi is simply the value of the cdf F* at
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xi, i.e. F*(xi). We may view F* as a continuous approximation to the step-

function F. From (9) we see that F* is a piecewise linear function that starts

at zero at xi 1,i and (if the xj are consecutive intergers and rj > 0) steadily

increases to the value of 1 at xj + 1/2 .

The standard version of equipercentile equating can be viewed as replacing

F by F* and G by a corresponding G. When [rj>01 and tsk>01, the inverse func-

tions, F;1 and G;1 both exist and the functions in (11) are well-defined, i.e.,

ey(x) = G;I(F*(x))

and (11)

ex(y) = FT*1(G*(y))

By definition, ey and ex given in (11) are the population eq.iipercentile

equating functions for equating X and Y. Sample estimates of ey and ex in (11)

are defined by substituting in rj for rj and sk for sk in the definitions of F*

and G*, I.e. (9). (In addition, in practice a post-smoothing step may be

introduced to make the final equating functions even smoother than the piecewise

linear functions in (11), Angoff (1984), Fairbank (1985), Kolen (1984), Kolen

and Jarjoura (1987)).

There are various problems with this version of equipercentile equating.

For one, consider the me-in and variance of X and its "continuous approximation",

X*. We have

F(X*) = E(X + U) = E(X) + 0 = E(X)

Var(X*) = Var(X + U) = Var(X) + Var(U) .

it is we 1-known that Var(U) - 1/12 so that X and X* have the same means but

differeu: variancc,s. ne higher moments of X* also fail to agree with those cf



X. Hence, what the traditional version of equipercentile equating actually ,Ines

is to exactly match the distribution of the two continuous random variables X*

and Y* rather than to match the discrete distributions of X and Y. No rre,meht.

beyond the first can be expected to be exactly matched using the standard

equipercentile equating function although they may be close enough for A.

work. In addition, because F* and G* place no probability outside the inter-:a.1

(x1 - 1/2, xj + 1/2) and (yl 1/2, yK + 1/2), it is automatically true that r!y(x)

ex(y) defined in (11) map the end-points of these two intervals Cr-Ito each

This is often an undesirable property in test equating since it usual:

the highest (and lowest) score on X to be mapped onto the highest (arld

score on Y. If X were much easier than Y this property is unreascnaole an:

Cue solely to the arbitrary use of F* and G* to form the equatint;

These problems with the traditional form of equipercentile

stem from tha arbitrary form assumed for U, i.e. that it be aniform en

The crux of the kernel method is to replace U with a more flex b:e choice

random variable. In particular, the point of view taken here is that the tra7!

tional equipercentile method is a version of the kernel method using a fixel

"bandwidth" (i.e. the variance of continuous random tL

general, it is always better to use bandwidths that can vary ir , ueeful ivc

kernel methods are employed.
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2. THE KERNEL METHOD OF EQUATING

Our approach is to accept the fact that X and Y are discrete and hence that

F and G must be approximated, in some sense, by continuous cdfs before (4) and

(5) can become well-defined (as they are in (11)). Picking up on the ideas in

section 1, suppose we now consiler the distribution of the random variable,

X(hx), defined by

X(h
X

) = a
X
(X + h

X
V) + (1-a

X
) p

X
(1.

where X is the discrete random variable that appeared in section 1 and V ir a

random variable that is independent of X and has a standard normal, N(0,1),

distribution. Also, in (12) px and ax are defined by:

p
X

- E(X) = E x-r.
J J '

02 = Var(X) = E (xj - px)2rj .

X

(13)

(14)

(15)

The bandwidth, hx, is a non-negative constant that we are free to select to

achievr some useful purpose. What we have done in (12) is replaced U in (7) by

h
X
V and then rescaled the sum of X and hxV to preserve the mean and variance of

X, i.e. :It is easy to show that

E(X(h )) = E(X) = p
X

and

Var(X(h
x

)) = Var(X)
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for any choice of h
X

O. Observe that X(0) is identical to X and X(c-') is a

normal random variable with the same mean and variance as X. When h > 0, X(h
X

)

has a continuous distribution with cdf

Fh (x) = Prob[X(h
X

) xl . (16)
X

We will regard [Fh (x), for h
X

> 01, as a family of continuous approximations to
X

the discrete cdf F(x). Hence, instead of the single X* of section 1, we may con-

sider the entire collection of approximations, [X(hx), hx > 01.

Observe that Var(h V) = h2
'

whereas in section 1, Var(U) = 1/12. Hence
X X

h
x

= 1/VY2 = .289 - .3 (17)

corresponds roughly to the traditional form of the continuous approximation to F

used in equipercentile equating, i.e. F*(x) in (9).

A nice feature of Fh (x) is that it has a reasonably tractable analytic
X

form. This is given in theorem 1, below.

Theorem 1: If X(h) is defined (12) and Fh (x) is the cdf in (16) then
X

Fh (x) = Z rj 0(Rjx(x)) (18)
X

wher(x)denotethestandardnormalcdfand Rj -x(x) is the linear function of x

given by

x - a x, (1-a
X
)p

Xx j
R
jX

(x) -
aX hX

in (19), ax and px are defined as in (13)

1 1

(19)



Proof:

Fh
X
(x) = Prob[X(hx) xi = Probtax(X + hx V) + (1-ax)px xl

= Prob[a
XhX

V x - aX X (l-a
X

)11
X

I

= E Probtaxhx V x ax xj -(1-ax)11x1X = xj1ri

x ax xi -(1-ax)px

= ProbtV
a h

RixIr. = E r- 0( (x)) .

J J

X X

QED.

Because the mean and variance of X(h ) exactly match those of the original

discrete random variable X, it is of interest to know how the higher moments of

X(h
x

) differ from those of X. It is, however, the cumulants of X(h) rather

than its moments that have the simplest relationship to those of X. The jth

cumulant of a distribution is the coefficient of (t)i/j! in the Taylor expansion

(about zero) of the natural logrithm of its moment generating function, M(t).

It is well-known that the first and second cumulants are the mean and variance,

respectively, of the distribution. Furthermore, the third and higher cumulants

of any norma] distribution are all zero. See Kendall and Stuart (1958) for a

thorough discussion of cumulants.

Theorem 2 shows the relationship between the cumulants of X(h) and those of X.

Theorem 2: Ifk.J (hX )denotesthejLLIcumulantofX(h)' andk.X denotes the
X i

jL12. cumulant of X, then for j ? 3 we have

= (a
X )J k

J X'

where a is defined in ( 4).
X

The rf of Tto:orem 2 given in the appendix.

BEST COPY AVAILABLE
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We may interpret Theorem 2 by saying that the higher cumulants of X(h)

are all smaller in absolute size (i.e. mcre like those of the normal distribu-

tion) than the corresponding cumulants of the original distribution of X.

This is because

(ax)i < 1 if hx > 0. (21)

The kernel method of equating is now easy to describe. First of all, con-

tinuous approximations to F and G are found via (18), i.e.,

Fhx(x), and Ghy(y), (22)

and then tho equating functions ey(x) and ex(y) are defined by

ey(x) = G-I(F (x)) (23)
hy hx

and

eX(5) = F-I(G (y))
hY

(24)

Note that (23) and (24) define families of equating functions indexed by hx and

y

In (23) and (24) the inverse functions F-I and G-I are defined by
hy

x = F7I (p) if and only if p = F (x) and
11X h-

y = G-I (p) if and only if p G (y).
hyby

, practice, these inverse functions do not have an explicit form but they

e easily computed hy interpolation.
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In (22) the bandwidths, hx and hy, are called the continuization constants.

When they are both chosen to be .3 the resulting equating functions, (23) and

(24), agree closely with the traditional equipercentile equating functions, as

ncted in (17). When hx and by are both large, the equating functions closely

appoximate the standard linear equating function as we demonstrate in the next

theorem.

Theorem 3: If ey(x) is defined by (23) then

Oy

lim ey(x) = p ( px) = Liny(x)
!lx,hy -0e°

Proof: lt is obvious that as hx and by -4*°, F
hx

(x) and G
hy

(y) approach these nor-

mai cdf's:

and

i!ence

x - Px
F (x) 0( )

hX 0
X

Py
(y) 0( /

Thy 0

where /- L(p) is:. the invorfse of the :->tandar.:-1 normal cdf, therefore

c,y(x) p + oy (1-1(0(
o
x

Py QED



We now point out that the objections to equipercentile equating mei..

at the end of section I do not apply tu the kernel method of equating.

varying the choice of the continuization constants, h_ and hy, we may a P.

side vaiiety of equating functions that ,re "in between" the ttaditiona.

And equipetcentile functions. All of these efivating tunctior,s ,

a.eahs and variances cf extY) and X and of ey(X; and Y. Furth

on e choioe of conti t.:iitati-n constants the er.luating

the top and t..ttom sci-res on X onto the top and bollco sourp_

the equal op, fonctcos ven ty (21) and (24) are def.nee f

are not restr.:cted lo ;he raw score inter%ais, i.P. [xl, x:

S.immary of the kernel method of eluating

We view observei:-st e test equatin as having three (11,.tinot

see, each of whio.h involve separate ideas.

r:

30 : ea t. ir,,at stet:. In this step, (stimates of

:Alta ined, 1 anl a. Tnis , a purely statistical pl. 1sp

mc'e's for the data are tiied out ana are selected to a g

:!ata. These modeis then generate the values of tr 1 and tml.

th.it lineal these des..tli,ed in

iosenhaum an:.1 Thayer (1')8') bP used to do this data fitting sin:e 1H-v

flexible enough to descrine a wide variety of real situations.

illustrate this approach.
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Phase II: The continulzation step. In this step h and h are chosen to

determine continuous approximations, F, (x) and G, (y), to F(x) and G(y).
nX ny

(F(x)andG(y)areohtainedbysubstitutingr-forr-in (2) and sk for sk

in (3)). The approximating cdf's have the form

and

x-ax xj .-(1-ax)Px
- 7 rj 0(

hx

A A A

, A y ay yk (1-ay)py
(. ) - E sk t1( ) .A

hy ay

(25)

(26)

In (25) and (26), tne estimated quantities, ax, ay, px, py, are all found by

substituting ri for and sk for sk in (13) (15). It should be emphasized

that continu ation is n.t a statistical procedure so that "optimal" choices of

hx and hy cannot ne based on optimizing statistical properties such as the esti-

mation of the k-1 or kJ. Father, in continuization we are attempting to

decide which cint n- cdf, FIx), is "L-losest" in some appropriate sense tc,

F(x). The naive .'hoice of hx - 0 makes 1. (x) = F(x), but we are then no longer

dealing with ,:ontInuons cdf's and the whole purpose of continuization (i.e. t

get un isvi.cse fklh' 1 1,,ns) is Jefeated. ln section 4 we discuss some metic1,,

for choosing lx and hy

Phase 1 The equating ..ttep. In this step, the est mated equating func-

tions arc '0:::puted forrollas

and

:(x
::. 1

(x),
fly

- F-1-11.(Ghl,(Y)) . (2)

BEST COPY AVAILABLE
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Once phases I and II are completed, phase III is straight-forward. However

because it is in this phase that the data on tests X and Y are finally combine.1

we identify it as a separate phase. In phase III, we also include the com-

putation of the standard error of equating (the SEE) that measures the accuray

associated with ex and Cy. In a companion paper to this one (Holland, King ani

Thayer, 1988) we give the details of a computation of the SEE that is based on

theestimatedstandarderrr)rsfor rj and sk that are available if these estima-

ted score probabilities are obtained in a particular way using the log-linear

!iindels described in Holland and Thayer (1987).
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3. THE ESTIMATION STEP

The population score probabilities, HI and fsk] defined in (1), must be

estimated from the data collected in the type of equating experiment that is

available to the analyst. tngoff (1984) describes a variety of these experi-

ments. In this section we shall be concerned with two major classes of such

experiments -- the random groups designs (Angoff's Designs I and II) and the

common item or anchor-test designs (Angoff's Designs III and IV). Each class of

design is considered in a separate subsection.

The estimation of the score probabilities is a purely statistical problem

in the sense that the frjl and the fskl are well-defined parameters and hence

,

estimates of these quantities, say [rji and tskl, should have desirable sta-

tistical properties. Some authors, e.g. Fairbank (1985), refer to the estima-

tion step as "pre-smoothing". While it is true that the estimates, trj1 and tskl,

ought to exhibit appropriate degrees of smoothness, this can be achieved in

various ways. There are at least four statistical properties that might be con-

sidered in the choice of the estimated score probabilities. These are listed

below.

Consistency: As sample sizes increase, the estimates rj and sk ought to con-

verge, in an appropriate sense, to the population values, rj and sk.

Positivity: Foreachpossiblescorevalue, xj and yk, the estimated score pro-

babilities, rj and sk, ought to be positive. For most tests, estimating a score

probability to be zero is unreasonable.
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Stability: Given the sample sizes involved, che deviations of rj from rj and sk

from sk ought to be as small as possible. Of course these deviations always

involve a random element, and the problem is to keep it to a minimum in an

appropriate average sense.

Integrity: When possible (as, for example, in the random groups design) the

integrity of the sample mean, variance, and possibly other sample moments ought

,

to be preserved in the estimated score distributions, trj1 and isk3. This

means, for example, that 2 x.J r. 3 and the sample mean for X are equal and that the

2

sample second moment for X and 2 x.J r.
J

are equal as well.

The approach to the estimation step that we favor is to fit a sequence of

parametric models to the data and to make appropriate diagnosis of these fitted

models until one is found that describes the data well with as few parameters as

possible. The log-linear models 'escribed in Rosenbaum and Thayer (1987) and in

Holland and Thayer (1987) are especially useful in this regard. These models

are all well-behaved because they are exponential families of discrete distribu-

tion and may be estimated by maxlmum likelihood using standard iterative tech-

niques. Because these models are exponential families, maximum likelihood

estimation forces the equality of some sample and estimated moments. Our

experience is that with 3 - 6 parameters these models can adequately describe a

wide variety of univariate score distributions. Bivariate distributions, useful

for anchor-test equating designs, are also easily estimated using the class of

log-linear models. Finally, these models automatically satisfy the positivity

and integrity conditions listed above. Careful data analysis using these models

also leads to the consistency and stability conditions being satisfied as well.
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3.1 Random Groups Equating Designs

In Angoff's Design I class of equating experiments, two independent random

samples are drawn from a common population, P, and test X is administered to one

sample while test Y is administered to the other. Angoff's Design II is similar

except that after each sample has been tested with either X or Y, they also

take the other test as well -- i.e. the two groups take both tests but in

counter-balanced order. We will ignore the data pooling problem that arises in

Design II and merely mention the close connection of this case to Design I to

which we now devote our attention.

The raw data that results from the two random samples in Design I may be

summarized as two sets of frequencies, i.e. the X-frequencies,

nj = number of examinees with X = xj,

and the Y-frequencies,

mk = number of examinees with Y = yk.

The two sample sizes are given by

n = E ni and m = E mk .

The raw sample proportions [nj/n1 and tmk/m1 are estimates of the popula-

tion parameters Irj] and tskl respectively. However, rarely will the raw sample

proportions satisfy the positivity or stability conditions mentioned earlier.

Of course, they always satisfy the consistency and integrity conditions, and,

when m and n are very large, the raw sample proportions may be acceptable estima-

tes of the population parameters.

Table 1 gives the raw sample frequencies of number-right scores for two

parallel, 20-item mathematics tests given to random samples from a national popu-

lation of examinees.
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Table 1 about here

It is evident that test Y, with a mean of 11.6 (±.1) is about one raw score

point easier than test X, which has a mean of 10.8 (±.1). In this example, the

single zero in the Y-frequencies would prevent the raw sample proportions from

satisfying the positivity condition. Table 2 shows the fitted frequencies and

Freeman-Tukey residuals (Bishop, Fienberg and Holland, 1975) for log-linear

models of the form
Lx

log rj = a + 2 13i(xj)i

i=1

and (29)
Ly

log sk . a' + E f31(Yk)i,
i=1

with Lx = 2 and Ly = 3. The likelihood ratio chi-square statistic for the

model for {rj1 is 18.35 on 18 degrees of freedom while that for [sic) is 20.24

on 17 degrees of freedom and these values suggest that, overall, the fits of

these two models are quite good. To get a more detailed look at these fits we

examine the Freeman-Tukey residuals in Table 2. These residuals should behave

roughly like independent standard normal deviates if the model fits adequately.

Since these residuals all lie within ± 2.0 and show no pattern we conclude that

the fitted probabilities (i.e. rj and sk) from these models are improved esti-

mates of the population score distributions in the sense of "consistency" and

"stability" described earlier.

Table 2 about here
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Score

Score Frequencies for Tests X and Y
for Random Samples from the Same Population

X-frequencies Y-frequencies

0 1 0

1 3 4

2 8 11

3 25 16

4 30 18

5 64 34

6 67 63

7 95 89

8 116 87

9 124 129

10 156 124

11 147 154

12 120 125

13 129 131

14 110 109

15 86 98

16 66 89

17 51 66

18 29 54

19 15 37

20 11 17

Total 1453 1455

Mean 10.8 11.6

Sd 3.8 3.9

J,...,-



2 0

Table 2

Fitted Score Frequencies and Freeman-Tukey Residuals for Tests X and Y

Score

for Random Samples From the

Test X
Fitted Frequencies* FT Residuals

Same Populations

Test Y
Fitted Frequencies** FT Residuals

0 3.30 -1.4 1.71 -1.8

1 6.44 -1.4 3.77 0.2

2 11.77 -1.1 7.65 1.2

3 20.17 1.1 14.24 0.5

4 32.43 -0.4 24.44 -1.3

5 48.89 2.0 38.75 -0.7

6 69.10 -0.2 56.98 0.8

7 91.57 0.4 77.91 1.2

8 113.79 0.2 99.35 -1.3

9 132.58 -0.7 118.54 1.0

10 144.83 0.9 132.72 -0.8

11 148.36 -0.1 139.87 1.2

12 142.49 -1.9 139.15 -1.2

13 128.32 0.1 131.10 0.0

14 108.35 0.2 117.31 -0.8

15 85.79 0.1 100.00 -0.2

16 63.69 0.3 81.46 0.8

17 44.33 1.0 63.60 0.3

18 28.93 0.1 47.73 0.9

19 17.71 -0.6 34.54 0.5

20 10.16 0.3 24.18 -1.5

* 2-moment fit

**3-moment fit
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3.2 The Anchor-Test Equating Design

In Angoff's Design IV class of equating experiments, two independent random

samples are drawn from two different populations, P and Q. Test X and an

anchor-test, A, are given to the P-sample, while test Y and the anchor-test, A,

is given to the Q-sample. Angoff's Design III is similar except that, in Design

III, P and Q are the same population.

In the anchor-test designs, when P and Q differ, there is a choice of po,u-

lation on which to do the equating. In general the synthetic population, S,

describes this choice of populations. Let w be a proportion, 0 w 1, then S

may be denoted wP + (1-w)Q and viewed as composed of two strata, P and Q, that

are given relative weight w and 1-w, respectively. This means that probabili-

ties for S are defined as weighted averages of corresponding P and Q probabili-

ties. For example, Probsk = xj] is defined by:

rj = Probsk = xj1 = wProbpfX = xj1 (1-w)ProbQ{X = xj}

and
(30)

sk = ProbstY = ykl = wProbOY = yki + (1-w)ProbQtY ykl

However, (30) shows the need to estimate probabilities for which there can

be no data, i.e., ProbQEX = xjl and Probp{Y = yid. This estimation must be

accomplished by making assumptions that, in general, can not be tested. One

such assumption, originally suggested by Tucker and discussed in Braun and

Holland (1982) is the what we call the Conditional Homogeneity Assoamption

defined below:

Conditional Homogeneity Assumption: The conditional distribution of X given A

(and of Y given A) is the same (i.e. is homogeneous) in P and Q, i.e.,



ProbpfX = xjIA = au] = ProbQfX = xj1A = au]

and
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(31)

ProbpfY = yklA = au] = ProbQk = ykIA = au].

Note that when P = Q the conditional homogeneity assumption is automatically

satisfied.

We call the assumption "conditional homogeneity" because it asserts that

the conditional distributions of X (and of Y) i P and Q are homogeneous, i.e.

the same in the two populations.

The next theorem summarizes the use of this assumption in the estimation or

calculation of ProbdX = xj] and Probp[Y = yk].

Theorem 4: Under the Conditional Homogeneity Assumption

ProbQfX = xjl E ProbpfX = xjlik = au] ProbcJA = au]

and (32)

Probp[Y = yk] ProbQfY = ykIA = au] ProbpfA = au]

The proof of this result is straight-forward and omitted.

In (32) we see that the right-hand sides of the equations involve only

parameters (i.e. probabilities) that can, in principle, be estimated from the

data collected in the design. When (32) is combined with (30), the probabilities

frj] and fsk] can all be estimated. The relevant equations on which this esti-

m2,,ion is based are given below:

rj = t,Probp[X = xj] + (1-w) E ProbpfX = xIA = au] ProbcJA = au]

and

sk - (1-w)PrbQk = yki + w ProbdY = ykIA - ProbpfA - au

(33)
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The raw data that arises in anchor-test designs consists of two sets of

bivariate frequencies, i.e., the (X,A)-frequencies from P,

nju = number of examinees with X = xj and A = au

and the (Y,A)-frequencies from Q,

mku = number of examinees with Y = yk, A = au.

The two sample sizes are given by

n = E nju and m = E mku.

j,u k,u

The raw sample frequencies could be used to estimate the various probabili-

ties that go to make rj and sk given in (33). However, rarely will these raw

sample frequencies yield satisfactory estimates of all the probabilities involved

except when m and n are very large. Tables 3 and 4 give bivariate frequencies

for (X,A) and (Y,A) where X and Y are the same as in sect_ion 3.1 and A is a 20

item anchor-test chat is parallel to X and Y. Note that in this example, P = Q

so that the conditional homogeneity assumption is automatically satisfied.

Tables 3 and 4 about here

Let Epjul and kkul be the population joint distribution given by

pju ProbOX = xj, A = aul

(34)

qku = ProbQIY = yk, A = aul.

Tables 5 and 6 give the fitted distributions that are obtained by fitting

log-linear models of the form
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2 2

log (pju) = a + E Oi (xpi + E Yi (au)i + 6 xj au

i=1 1=1

and (35)

2 2

leg (qku) = a* + 0. (3,k): + .Yt (au)i + 8* Yk au
i=1 i=i

Tables 5 and 6 about here

The likelihood ratio tests for adding extra terms to the models in (35)

A A

were not significant. Table 7 gives the estimates of rj and sk that follow from

these smoothed distributions using (33), with w = .5.

This is an example of an external anchor test. In Holland, King and Thayer

(1988) the internal anchor test is also discussed and shown to be easily trans-

fomed to the external anchor-test case.

Table 7 about here

3 1
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Table 7

Estimated Values for 191 and (ski Computed from Equation (33)

and the Fitted Distributions in Tables 5 and 6

- ' scccE

0

PC.CBABILITES

0.002
3.20-1 0.304
3.303 2 0.306

3 0.311
4 0.313

0.023 5 0.323

3.345 0.339
7 0.053

3 0.375 3 0.367

0 289 9 0.080
3.093 10 0.291

'1 0.097
0.393 12 0.098

3 3.389 '3 0.093
3.377 0.063

' 5 3.362 15 0.070

5 3. :;.-1 0.056

3.333 0.342
3 322 18 0.030

9 0.313 19 0.020

0.308 0.012

(.1
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4. THE CONTINUIZATION STEP

There are a variety of ways to select the continuization constants h
X

and

h . Perhaps the easiest is to always use specific fixed values such as

h
X

= h = c°, which corresponds to linear equating, or h
X

= h = .3, which we have

shown to correspond roughly to traditional equipercentile equating. Rather than

always using fixed choices of h
X

and h
'

we suggest a flexible approach toward
Y

the choice of continuization constants, remembering that various goals may need

to be achieved in selecting a satisfactory equating function.

Our approach is to choose hx so that Fh (x) is close to F(x) in some sense.
X

Some care needs to be exercised in selecting a notion of closeness. For

example, if the sup norm, i.e.,

suplFh (x) - F(x)1 (36)
x X

is used to measure how close Fh (x) is to F(x), then this is minimized for
X

hx = 0 and the result is useless.

The density of Fh (x), i.e. Ft.", (x), can be used to clarify what we want in
X X

a "good" continuous approximation to F(x). Consider Figure 1. It is the den-

sity that arises when h
X

= .3 in the example of section 3.1. It exhibits a

"stegosaurian" character that would appear, on its face, to be undesirable.

When h
X

= 1.0, the result is Figure 2. Evidently, h
X

has a big influence on the

shape of the continuous approximation for F(x).

When the xj are consecutive integers, we can use the density, (x), to
X

create a histogram that we can then compare to the rrlj]. This is done in the

following way. Imagine a histogram centered on the {XJ} with heights iFh (xi)]
X '

and unit width. If h
X

is chosen appropriately this histogram will be close to

the unit width histogram on the xj with heights IC-j]. To choose hx we can

Figures 1 and 2 about here
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minimize the "squared difference" criterion.

E (rj - F (xi))2 . (37)
X '

The minimizing values of hx and hy for the example of section 3.1 are .62 and

.57 respectively.

In the case of anchor test equating, i.e. section 3.2, the same

coniderations arise but are applied to Hi and [ski from (33). Using the

estimates of rj and sk in Table 7, the optimai values of hx and hy that minimize

the :zquared difference criterion are .62 and .59, respectively.

The cuntinuization step can be used to remove the need for a final

"postsmoothing" of the equating function (Fairbank (1985), Kolen (1984), Kolen

and Jarjoura (1987)). The reason postsmoothing arises is that if the continuous

approximations to F and G are not smooth enough, the equating functions computed

via 1.1) will exhibit unreasonable oscillations about an otherwise smooth trend.

Po-;tsmoothing eliminates these oscillations. One situation that can produce

these oscillations arises when tests are formula-scored. In formula-scored

tests with few omitted responses the raw-score distribution will often produce

"6aps" at specific scores. Figure 3 illustrates this phenomenon. When

s7:,cothing frequencies that exhibit gaps one has the choice of whether or not the

smo-,thod frequencies ought to have "gaps" in them. Figure 4 shows a fitted

distribwion to the data in Figure 3 that has gaps. It was achieved by fitting

m-Iments to the "gap" scores as well as to all the scores using the techniques

dincusod in Holland and Thayer (1987). If a distribution that had no gaps had

17,,11 fit t() theE;e data, the fit would have been poor according to the usual

FiKures 3 and 4 about here
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Figure 3

A Raw-score Distribution for a Formula-scored Test
That Exhibits "Gaps" at Regular Intervals on the Score Scale
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goodness-of-fit statistics and it would have been unclear how to choose a satis-

factory model. When data with gaps are encountered in test equating we recom-

mend that the gaps be accounted for in the estimation step, i.e. by fitting a

model like the one in Figure 4. The reason is that standard goodness-of-fit

tests then provide a rational basis for choosing a model, and the resulting

estimated standard errors for the fitted model (used to compute the standard

error of equating) can be expected to be approximately correct. In the con-

tinuization step, the gaps can then be removed by taking h
X

large enough.

Figures 5 and 6 show the approximating densities for the fitted model in Figure

4 for h
X

= 1 and 3, respectively. When h
X

= 1 there are still some remnants of

the gaps left but by hx = 3 they are gone and the undesirable oscillations have

been smoothed out. Figure 7 shows the fitted probabilities from Figure 4 and

the continuous density for h
X

= 3 from Figure 6. The density shows the general

shape of the fitted probabilities but the gaps have been filled in.

We recommend that gaps be preserved in the estimation step and then removed

in the continuization step in order to insure the accuracy of the standard error

of equating that is discussed extensively in the comIlanion paper, Holland, King

and Thayer (1988).

Figures 5, 6 and 7 about here

4t;
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Figure 5

,

Graph of the Density Ft (x) for hx ... 1.0 for (ril in Figure 4
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Figure 6

,

Graph of the Density F, (x) for hx - 3.0 for tril in Figure 4
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Figure 7

Graph of thc Density for hx 3.0 and the Fitted Probabilities

Showing How the Gaps Have Been Filled In
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5. THE EQUATING STEP
A A

Once continuous approximations to F(x) and G(y) are in hand, it is a

relatively straightforward process to compute the equating functions via (23)

and (24). The only computational issue is the accuracy with which the inverse

-1
functions Fh

X
(p) and G1-1

1
(p) need to be approximated. We have not investigated

this carefully but have found that for the cases we have considered a grid of

width .05 has proved sufficient.

In the examples of sections 3.1 and 3.2 the equating functions are very

nearly linear. Figure 8 shows the difference between the graphs of the linear

equating function (hx = hy = c°) and the approximate equipercentile equating

function (hx = hy . .3) for equating Y to X for the example in section 3.1.

While there are some differences between these equating functions they are quite

small in this example. Figure 9 shows three equating functions for simulated data

in which there is a great deal of curvilinearity when h
X

= h = .3. The

equating functions for hX = hy = 5 and h
X

= h = 10 are also shown to illustrate

that as the h's increase the equating functions become more linear.

Once h
X

and h are selected, Fh
X
(x) and Gh (y) are determined as functions

of the estimated score probabilities {ri} and {sk}. The computation of the

standard error of equating (SEE) can then proceed by a straight forward, but

tedious, application of the 6-method of computing asymptotic variances of func-

tions of random quantities -- in this case the random quantities are [rii and

[skl. This is the approach described in detail in our companion paper, Holland,

King and Thayer (1988).

Figures 8 and 9 about here

b



Figure 8

The Difference Between the Linear and the Approximate Equipercentile

Equating Functions, for the Example of Section 3.1
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Three Equating Functions for Simulated Data

EQUATING FUNCTIONS FOR SIMULATED DATA
POPULATION VALUES

EQ X(.3)

EQ X(5)

ci EQ X(10)

0

0 1 0 2 0 3 0 4 0 5 0 6 0

Y SCORES

r

42



43

6. DISCUSSION

We believe that the kernel method of equating, when coupled with estimated

score distributions using log-linear models, has a number of advantages over

other observed-score equating methods.

First of all, the three phases, estimation, continuization and equating,

form a unified approach to many problems that arise in equating. Most of the

difficulties in equating arise in the estimation and continuization phases and

these are quire different and ought to be treated separately. The problem of

devising equating diagnostics is fairly easy once this separation is made. Some

diagnostics will concern the estimation phase (i.e. the adequacy of model fit)

while others concern the choice of continuization constant (e.g. the treatment

of the "gaps" in formula score distributions).

Because log-linear models are very flexible they provide useful models for

both large and small samples. Hence their use with the kernel method eliminates

many of the problems that arise in equating with small samples of examinees. At

the same time, large samples can also be fit adequately using these models.

The kernel method essentially contains linear and traditional equipercen-

tile methods as spocial case!, and can therefore exploit the best features of both

methods. Furthermore, because it can handle both random groups and common ite:

designs, the use of log-linear models in the latter case provides a substan-

tially improved version of the method called "frequency estimation" (as called

for in Braun and Holland, 1982).
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The kernel method does not force the high and low score on the two tests to

match as traditional equipercentile (and IRT true-score) methods do. It also

does not restrict the equating function to be defined for only those raw score

values that occur on the test. This can be very important for the chains of

equatings that build up as a long sequence of new test forms is built up. In

addition, because Fhx and Ghx are given by analytic formulas it is unecessary to

specify the equating function by a table as most equipercentile methods do.

Instead, if hy, hx and the estimated probabillities (rj1 and {..ik} are kept, Fhx,

Ghy and the equating functions can be computed anew and chained together when-

ever they are needed. Although this is more complicated than carrying equating

chains through by linear equating, it is still more satisfactory than the ad hoc

tables of traditional equipercentile equating.

Finally, computationally efficient methods of estimating the standard error

of equating are available and, for the first time, honest SEEs can be provided

for a wide variety of equating designs. These SEEs reflect both th: shape of

the equating function, the design of the equating experiment, and the method

used to pre-smooth the data in the estimation phase of the equating process.

In view of these advantages we see the kernel method of equating as a

complete equating package that can provide measurement statisticians with a

powerful set of tools for solving practical everyday problems in equating.
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Future research in this area might explore a range of topics such as these.

1) Are there methods for choosing hx and hy that are better than the

minimization of the squared difference criterion, (37)?

2) What is the effect of data dependent choices of hx and hy on the SEE?

3) Are the SEEs found by the 6-method good enough or are higher-order

methods needed?

4) What is the relation between the kernel method and IRT or linear true-

score equating methods?

5) What role can the kernel method play in the assessment of the invariance

of equating functions across different populations of examinees?
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APPENDIX: Proof of Theorem 2.

Let the moment generating function (mgf) of X be Mx(t). It is well-known

that the Taylor expansion of log[Mx(t)] is given by

log[Mx(t)] = Mxt + 0;ct2/2 + kjx(t)j/j! . (38)

But the mgf of X(h) is given by

E[expltX(hx))) =

E[exp[t(ax(X+hxV) + (1-ax) px)]]

exp{t(1-ax)px}E[expftaxX + taxhx1.11]

But since X and V are independent

E[expltaxX + taxhxV]]

= E[expttaxXl]E[expltaxhxVi]

Mx(tax) Mv(taxhx)

.(.re Mx and My are the mgfs of X and V respectively. But, it is well-known

that

M(t) = expN t21,

so that the mgf r_nf. X(hx) ,:an be expressed as

E[exp[tX(hx)11

expft(1-ax)px} Mx(tax) exp{1/2t2441.

Now take InFs. to g.!,t the cumulants, i.e.,

log E[expltX(hx)]]

t(1-ax)px 4 14 t2a!xh!x + log[Mx(tax)]. (39)

(qt) and (.3()) to get
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log E[exp[tX(hx)1] =

1( 1(((l-ax)px + axpx)t + (4 11 + 04)t2/2

+ E kjx(ax)i(t)i/j!.

2 2 2 2 2 2 2 2

But (l-ax)px + axpx = px and axhx + Oxax = ax(hx + Ox) = Ox, so we obtain

log E[exp[tX(hx)1] =

2

llXt + Ox t2/2 + E (ax)ikjx(t)j/j!.

But the coefficients of a Taylor expansion are unique so the cumulants of X(h)

are (ax)jkjx, QED.


